Pseudospectral Solution of the Two-Dimensional Navier-Stokes Equations in a Disk

نویسندگان

  • David J. Torres
  • Evangelos A. Coutsias
چکیده

An efficient and accurate algorithm for solving the two-dimensional (2D) incompressible Navier–Stokes equations on a disk with no-slip boundary conditions is described. The vorticitystream function formulation of these equations is used, and spatially the vorticity and stream functions are expressed as Fourier–Chebyshev expansions. The Poisson and Helmholtz equations which arise from the implicit-explicit time marching scheme are solved as banded systems using a postconditioned spectral τ -method. The polar coordinate singularity is handled by expanding fields radially over the entire diameter using a parity modified Chebyshev series and building partial regularity into the vorticity. The no-slip boundary condition is enforced by transferring one of the two boundary conditions imposed on the stream function onto the vorticity via a solvability constraint. Significant gains in run times were realized by parallelizing the code in message passage interface (MPI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Numerical Simulation of Two–Dimensional Flow Past a Dimpled Cylinder Using a Pseudospectral Method

A numerical simulation of steady and unsteady two-dimensional flows past cylinder with dimples based on highly accurate pseudospectral method is the subject of the present paper. The vorticity and streamfunction formulation of two-dimensional incompressible NavierStokes equations with no-slip boundary conditions is used. The system is formulated on a unit disk using curvilinear body fitted coor...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

Flow Analysis Heat and Mass Transfer in a Room

This reports the study on the flow behaviour, heat transfer and contamination distribution in a room. For this purpose the 3-D incompressible Navier-Stokes equations, energy equation and a mass transfer equation which model the concentration of contamination have been applied. For turbulence simulation the two equation standard k-  turbulence model was employed. By means of SIMPLE algorithm the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999